SEVEN STAR INTERNATIONL SCHOOL BANI

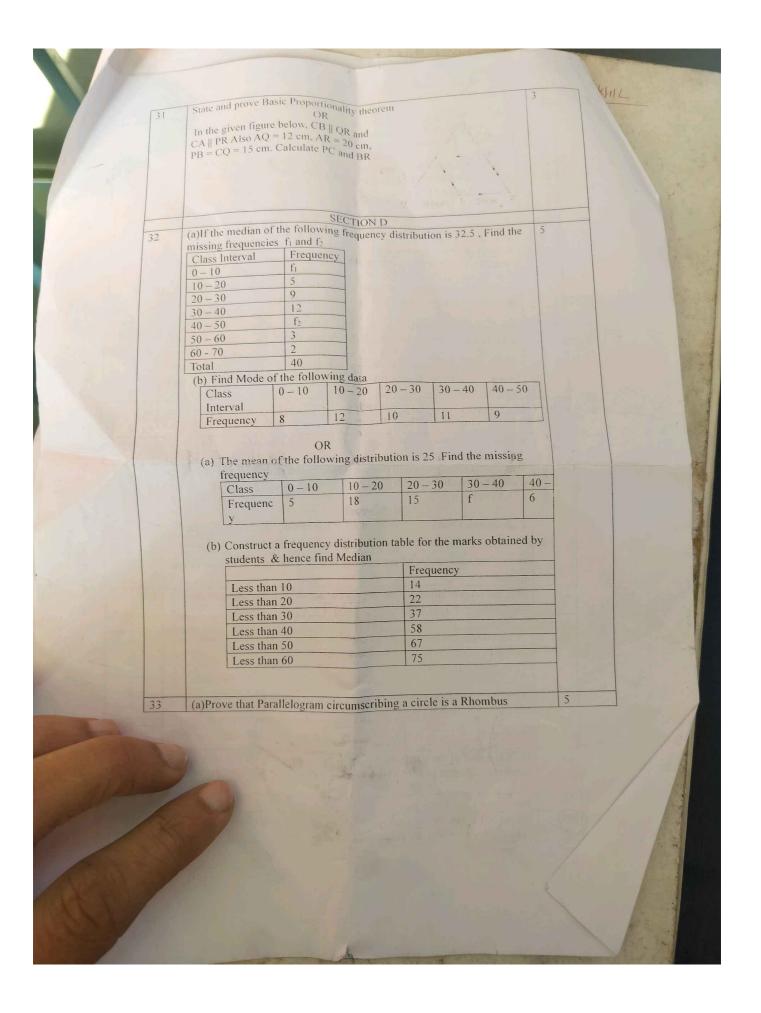
CLASS: X ----- MATHEMATICS

Time Allowed: 3hrs

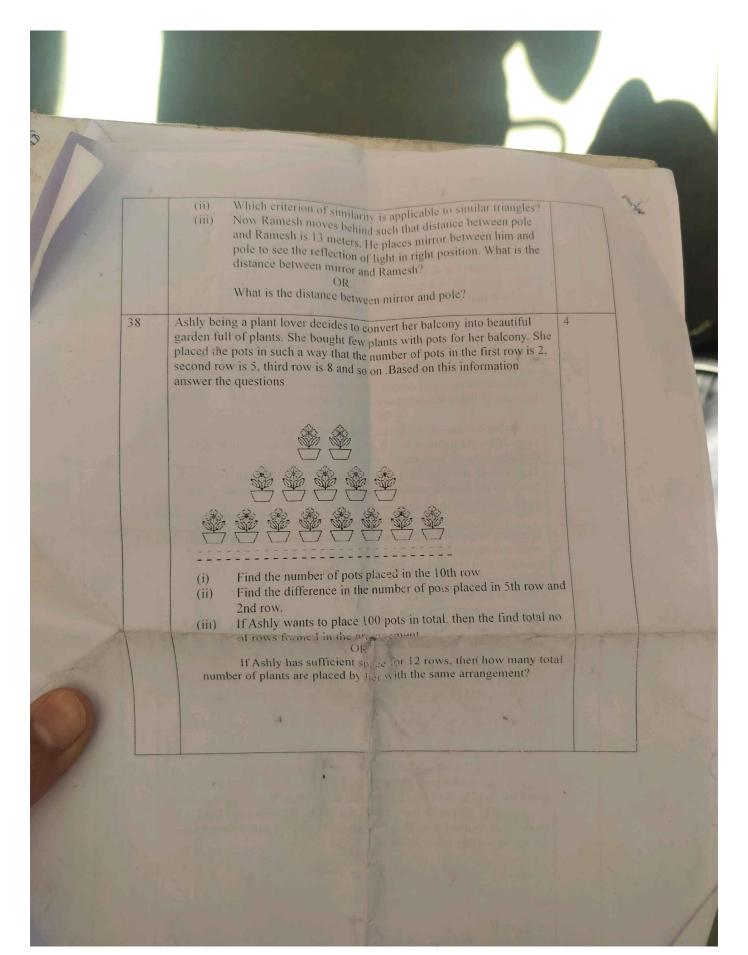
General Instructions:

Maximum Marks: 80

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 Case Based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided.


An internal choice has been provided in the 2marks questions of Section E Draw neat figures wherever required. Take π =22/7 wherever required if not stated

QN NO:		dne .	SEC	CTION A	- Berry		MARKS			
1	If the sum of the value of k (a) $\pm \sqrt{8}$	is		$(-14)x^2 - 2x$ 2 $(d) \pm 9$		n	1			
2	Three coins are tossed simultaneously. The Probability of getting atmost 2 heads is $(a) \frac{2}{8} \qquad (b) \frac{1}{8} \qquad (c) \frac{6}{8} \qquad (d) \frac{7}{8}$					1				
3	For the following distribution, the sum of lower limits of the Median class & Modal class would be									
	Class Interval		The state of the s	10-15	15 – 20	20 – 25				
	Frequency (a) 15	(b) 30	5 (c) 25	(d) 35	20	9				
4		4.2 cm is (b) 7	7.6 cm ³	(c) 58.2 cm	³ (d) 19,4	cm ³	1			
5	What would be 2x + ky = 7 & (a) All rea (c) 6	2 2 Out	- 12 is cons except - 6	hich the pai sistent and in (b) All re	ndependent	?				



	1
In the fig: a quadrilateral ABCD is drawn to circumscribe a circle. If BC = 7 cm, CR = 3 cm & AS = 5 cm, the value of AB is (a) 10 cm (b) 7 cm (c) 8 cm (d) 9 cm	
7 If P(2, x) is the mid-point of the line segment joining the points A(6, -5) and B(-2, 11), the value of x is (a) 5 (b) 2 (c) 3 (d) 4	1
8 If $\tan \theta = \sqrt{3}$, then the value of $\sec^2 \theta + \csc^2 \theta$ is a) 1 b) $\frac{40}{9}$ (c) $\frac{38}{9}$ d) $5\frac{1}{3}$	
PA & PB are tangents to the circle with centre O, such that $\angle APB = 50^{\circ}$, then measure of $\angle OAB$ is (a) 25° (b) 30° (c) 40° (d) 50°	1
(a) 25 (b) 27 (c) 20 (d) 5	
The sum of the squares of zeroes of the Quadratic polynomial $P(x) = x^2 - 8x + k$ is 40. The value of k is (a) 15 (b) 10 (e) 12 (d) 64	1
The equation $x^2 - bx + 1 = 0$ does not possess real roots, then (a) $-3 < b \le +3$ (b) $-2 < b < +2$ (c) $b > 2$ (d) $b < -2$	1
A card is drawn at random from a pack of 52 cards. The Probability that the card is neither an acc nor a space is (a) $\frac{35}{52}$ (b) $\frac{10}{13}$ (c) $\frac{9}{13}$ (d) $\frac{19}{26}$	1
A line intersects the Y-axis and X-axis at the points P and Q respectively. If $(2, -5)$ is the mid-point of PQ, then the coordinates of P and Q are respectively (a) $(0, -5)$ and $(2, 0)$ (b) $(0, 10)$ and $(-4, 0)$ (c) $(0, 4)$ and $(-10, 0)$ (d) $(0, -10)$ and $(4, 0)$	1
15 If \(\)	1
cylindrical cup would be (a) 19.4 cm ³ (b) 55.4 cm ³ (c) 38.8 cm ³ (d) 471.4 cm ³	1
APB is a tangent to a circle with centre O, at point P. If \angle QPB = 50°, what would be the measure of \angle POQ? (a) 120° (b) 110° (c) 100° (d) 140°	l
If $\sin \theta = \cos \theta$, then value of $\csc \theta$ is (a) 2 (b) 1 (c) $\frac{2}{\sqrt{3}}$ (d) $\sqrt{2}$	1

	DASED OUTDOOR	
	ASSERTION- REASON BASED QUESTIONS In questions 19 & 20 a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following	
	choices. (a) Both A and R are true, and R is the correct explanation of A (b) Both A and R are true, but R is not the correct explanation of A	
	(c) A is true, R is false (d) A is false, R is true	
19	Assertion (A): If product of 2 numbers is 5780 and their HCF is 17, then their LCM is 340 Reason (R): HCF is always a factor of LCM	1
-20	Assertion (A): The area of the minor segment of a circle is always less than the area of the Corresponding sector of the circle Reason (R): The area of the major segment of a circle is always less than	1
	the area of the corresponding Sector of the circle	
21	SECTION B The LCM of two numbers is 6 times their HCF. The sum of LCM & HCF is 91. If one number is 26, find the other number	2
	OR Three alarm clocks ring their alarms at regular interval of 6 min ,9min & 15 min respectively. If they first beep together at 4 pm,what time will they next ring together?	
22,	Find the value of α and β if $\sin (\alpha + 2 \beta) = \frac{\sqrt{3}}{2}$ and $\cos (\alpha + 4\beta) = 0$	2
23/	Find the value of a, if the distance between the points $A(-3, -14)$ & $B(a, -5)$ is 9 units	2
24	Two dice are thrown simultaneously. What is the probability of getting (i) A Prime number on both the dice? (ii) A total of 9 or 11?	2
	A jar contains marbles of blue, white & red colours. The probability of	
	selecting a blue marble is $\frac{4}{15}$ & the probability of selecting a white marble	
	is $\frac{2}{5}$. If the jar contains 10 red marbles, find the total number of marbles in the jar	
25	Find the ratio in which the point $(-1, 6)$ divides the line segment joining the points $(-3, 10)$ and $(6, -8)$ 297	2
-	SECTION C	
6	A chord of a circle of radius 15 cm subtends an angle of 60° at the centre Find area of the corresponding minor segment (use $\pi = 3.14 \& \sqrt{3} = 1.73$)	3
	OR Find the area of the minor sector of a circle of radius 42 cm, if length of the corresponding arc is 44 cm	
	Prove that : $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} + \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = 2 \sec \theta$ If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$ and the quadratic equation $2x^2 + px - 15 = 0$	3
	If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$ and the	3
	of k	
	Prove that $\sqrt{5}$ is Irrational	3
)	If sum of the squares of the zeroes of the quadratic polynomial $p(x) = x^2 - 8x + k$ is 40, find the value of k	3

	(b)In the given figure, a circle inscribed in Δ ABC touches its sides AB, BC and in Δ ABC touches its sides AB, BC and AC at points D, E & F respectively. If AB = 12 cm, BC = 8 cm and AC = 10 AB = 12 cm, BC = 8 cm and AC = 10
	AB = 12 cm, BC = 6 cm, then find the lengths of AD, BE and CF
34	The denominator of a fraction is 4 more than twice the numerator. When both the numerator and denominator are decreased by 6, then denominator becomes 12 times the numerator. Determine the fraction OR A number consists of two digits. When the number is divided by the sum
	of its digits, the quotient places. Find the number
35	points of the growth $\sqrt{3}$ as 1.732)
36	The great Stupa of Sanchi is one of the oldest stone structures in India , an important Monument of Indian Architecture. Its nucleus was a simple important Monument of Indian Architecture. Its nucleus was a simple hemispherical brick structure built over the relics of Buddha. It is a perfect example of combination of solid figures. A big hemispherical dome with a cuboidal structure mounted on it. Based on the above information answer these questions (i) What would be the volume of air contained in the hemispherical dome if the height of the dome is 21 m? contained in the hemispherical dome if the cuboidal shaped top of dimension (ii) What would be the volume of the cuboidal shaped top of dimension (ii) Find the cloth material required to cover the dome if radius of base is 14 m? OR Find the total surface area of the combined structure of the dome Find the total surface area of the combined structure of the dome (with traffic light fired on it). He stands at a certain distance so that he can (with traffic light fired on it). He stands at a certain distance so that he can above the ground. The distance of Ramesh and the pole from the mirror are 1.8 m and 6 m respectively
	(i) What is the height of the pole?

